
Sanjay Goel, School of Business, University at Albany, State University of New York of 99 1

Server Side Development:

Servlets
ITM 602

Enterprise Application Development

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 2

• Container Architecture

• Web Components

• Servlets and Servlet Applications

• Servlet API

– Javax.servlet

– Javax.servlet.http

• Deploying an Application

Server Side Development
Outline

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 3

• The owl two-tiered client-erver model has been superceded by

the multi-tiered architecture prevelant in the enterprise

applications

– Allows each layer to communicate just with layers above and below it

• Benefits of having a tiered application

– Encapsulates rules and functionality together providing for easier

maintenance & development

– Enhances flexibility and reusability of logic and software components

– Allows developers to focus on the area of their speciality e.g. database,

servers, web page, etc.

Server Side Development
Tiered Architecture

Web Server

(Application Logic)

Database/ FileSystem

(Persistent Storage)

Application/Browser

(User Interface)

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 4

• A web server is a program running on the server that listens

for incoming requests and services those requests as they

come in.

• Once the web server receives a request, depending on the

type of request the web server might look for a web page, or

it might execute a program on the server.

• It will always return some kind of results to the web browser,

even if its simply an error message saying that it couldn’t

process the request.

• By default the role of a web server is to serve static pages

using the http protocol

• Web servers can be made dynamic by adding additional

processing capability to the server

Server Side Development
Web Server

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 5

• Several different tools are available for extending the

server capabilities

– Java enterprise architecture

– VB .Net architecture

– Active Server Pages (ASP)

– CGI-Perl scripting

• These tools process incoming requests from the user

and generate custom html pages

Server Side Development
Server Extensions

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 6

• Tomcat is a stand alone web server and a servlet container

– It is open source and free for usage

• It is written in Java

– You do not have to be a Java programmer to use it

– It’s web server is not as fully featured as others like Apache

• Installing Tomcat

– Make sure that jdk1.4 (or higher) is installed on your machine

– Download the latest windows version of Tomcat

– Run the installer by double clicking on the download

– The installer checks if JRE and JDK are available for Tomcat

– Accept the license agreement

– Installation directory: c:\Program Files\Apache Tomcat 4.0

– On installation you get a message Completed

Server Side Development
Tomcat

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 7

HTTP

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 8

• User applications implement this protocol

– Other protocols implemented by the OS.

• Different applications use different protocols

– Web Servers/Browsers use HTTP

– File Transfer Utilities use FTP

– Electronic Mail applications use SMTP

– Naming Servers use DNS

• Interacts with transport layer to send messages

HTTP
Application Layer Protocol

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 9

• Two parameter required for identifying the receiving process

– Host machine identifier - IP Address (localhost or ip-address)

– Host machine process identifier - Port (80 or 8080 for web server)

HTTP
Application Layer Protocol, cont’d.

TCP/UDP

with

Buffers

and

Variables

Controlled by

Application

Developer

Controlled by

Operating

System

HOST

Process Process

Controlled by

Operating

System

Controlled by

Application

Developer

HOST

TCP/UDP

with

Buffers

and

Variables

Socket Socket

Internet

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 10

• Lightweight protocol for the web involving a single request

& response for communication

• Provides 8 methods

– Get: Used to request data from server

 (By convention get will not change data on server)

– Post: Used to post data to the server

– Head: returns just the HTTP headers for a resource.

– Put: allows you to "put" (upload) a resource (file) on to a webserver

so that it be found under a specified URI.

– Delete: allows you to delete a resource (file).

– Connect:

– Options: To determine the type of requests server will handle

– Trace: Debugging

HTTP
HyperText Transfer Protocol

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 11

• GET and POST allow information to be sent back to the web server

from a browser

– e.g. when you click on the “submit” button of a form the data in the form

is send back to the server, as "name=value" pairs.

• Choosing GET as the "method" will append all of the data to the URL

and it will show up in the URL bar of your browser.

– The amount of information you can send back using a GET is restricted

as URLs can only be 1024 characters.

• A POST sends the information through a socket back to the webserver

and it won't show up in the URL bar.

– This allows a lot more information to be sent to the server

– The data sent back is not restricted to textual data and it is possible to

send files and binary data such as serialized Java objects.

HTTP
GET and POST

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 12

• Contains information about client and the request

• Four categories of header information

– General Information: Date, caching information, warnings etc.

– Entity Information: Body of the request or response e.g. MIME type,

length etc.

– Request Information: Information about client e.g. cookies, types of

acceptable responses etc.

– Response Information: Information about server e.g. cookies,

authentication information etc.

• General & Entity information used for both client & server

• Request information included by client

• Response information included by server

HTTP
HTTP Headers

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 13

• HTTP is a stateless protocol
– Request/Response occurs across a single network connection

– At the end of the exchange the connection is closed

– This is required to make the server more scalable

• Web Sites maintain persistent authentication so user does not have
to authenticate repeatedly

• While using HTTP persistent authentication is maintained using a
token exchange mechanism

• HTTP 1.1 has a special feature (keep-alive) which allows clients to
use same connection over multiple requests
– Not many servers support this

– Requests have to be in quick succession

HTTP
Protocol

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 14

• Three types of tracking methods are used:

– Cookies: Line of text with ID on the users cookie file

– URL Session Tracking: An id is appended to all the links in
the website web pages.

– Hidden Form Elements: An ID is hidden in form elements
which are not visible to user

• Custom html page allows the state to be tracked

HTTP
Tracking State

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 15

• When a server responds to a request it provides a status code

• Web Container automatically handles setting of status codes

• Five categories of status codes
– Informational

– Success

– Redirection

– Client error

– Server error

• Common Status Codes
– 200 – Request was processed normally

– 401 – Unauthorized access

– 403 – Forbidden

– 404 – Requested resource not found on server

– 405 – Method Not allowed

– 500 – Internal server error

HTTP
HTTP Status Codes

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 16

J2EE Architecture

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 17

• Application is considered as a collection of related yet
independent components

• Container acts as an execution environment for the
components

• Container Provides services to the components

J2EE Architecture
J2EE – Container Architecture

J2EE Component

Component Code

& Resources

J2EE Container

J2EE

Component

J2EE

Component
J2EE

Component
J2EE

Component Component 2

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 18

Applet Container

Applet

Application Container

Application

J

D

B

C

J

A

X

P

J

A

A

S

J

M

S

Client Tier

J2EE Server

J2ME App

Other

Application or

Server

J2EE Server

Enterprise

Information

System

Non-Java Sever

Database

3rd & Nth Tiers

Web Container

C
o
n
n
e
c
tio

n
s

J
D

B
C

J
A

X
P

J
a
v
a
M

a
il/J

A
F

J
T

A

J
A

A
S

J
M

S

Web Container

C
o
n
n
e
c
tio

n
s

J
D

B
C

J
A

X
P

J
a
v
a
M

a
il/J

A
F

J
T

A

J
A

A
S

J
M

S

JSPs Servlets EJBs

J2EE Server

Middle Tier

internet internet

J2EE Architecture
J2EE – Container Architecture, cont’d.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 19

Application Container

J2EE Architecture
Client Tier

Applet Container

Applet

Application Container

Application

J

D

B

C

J

A

X

P

J

A

A

S

J

M

S

ClientApp

(JAR file)

Main AppClass

Public static void main (String args[])

Java Packages,

Classes, Libraries

D
ep

lo
y
m

en
t

D
escrip

to
r

• Client Container has a contract with applications

 to provide certain functionality to the components

 in the application

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 20

• Web Container

– Manages execution of servlets and JSPs

– Part of web or application server

– Supports HTTP

• EJB Container

– Business Components that contain business logic or rules

– Two types of EJBs

• Session Beans – Logic Oriented and deal with handling client requests

and data processing

• Entity Beand – Strongly coupled with data and deal with data access

and persistence

J2EE Architecture
Middle Tier Container

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 21

J2EE Architecture
E-Commerce Scenario

WEB Container

WEB Container

OrderManager

Application Application Container

ClientApp

WEB Container

WEB Container

Shopping Cart

Application

Process Servlet

Order

J2EE Server

EJB Container

WEB Container

Order EJB

Order Manager

EJBApplication

Supplier Server

Order Manager

Servlet

StockOrder

(XML)

Database

Catalog Servlet

Cart Servlet

• Two distinct parts of the applications

– Shopping Cart: Handles consumer side of the store

– Order Manager: Handles back end processing

Static

 Pages

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 22

• Cart Application

– Catalog servlet gets product data from the database

– Cart servlet keeps track of the customer purchase

– Process servlet processes the order

• Order Process Application

– Processes customer order

– Checks inventory levels (orders new parts from Suppliers)

– Processes payments

– Sends acknowledgement to the client

J2EE Architecture
E-Commerce

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 23

J2EE Architecture
E-Auctions

Applet Container

PaymentApplet

C
lien

t T
ier

M
id

d
le T

ier
D

a
ta

b
a
se T

ier

S
a
les &

 A
u

ctio
n

C
lu

ster

WEB Container

WEB Container
Payment

Application

WEB Container

WEB Container
Payment

Application

P
a
y
m

en
t C

lu
ster

WEB Container

WEB Container
Sales/Auction

Application

WEB Container

WEB Container

Sales/Auction

Application

WEB Container

WEB Container
Sales/Auction

Application

Sales & Auction

Database

Payment

Database

Browser

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 24

• Two separate applications
– Auction: Deals with bidding and searching

– Payment – Deals with backend financial processing

J2EE Architecture
E-Auctions – Container Ideas

Auction Application

Registration

D
e
p

lo
y
m

e
n

t

D
e
sc

rip
to

r

Java Package

Post

Search

Bid

Purchase

History

Payment

Offer

Static

 Pages

Payment Application

Java Package

Static

Pages

Payment

D
e
p

lo
y
m

e
n

t

D
e
sc

rip
to

r

Web Container

Application Container

ClientApp

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 25

• Client Side uses a web browser to view store

• Auction Application

– Registration Servlet: Registers new users

– Post servlet: Accepts new items for auction

– Search servlet: Allows buyers to search database

– Bid servlet: Allows users to bid on pending items

• Informs the seller of the bid (e-mail)

– Purchase servlet: Processes sales

– History Servlet: Allows bidder/seller to review history of any item
on auction

• Payment Application

– Payment Servlet: Credits the buyer and Debits the seller (Credit card
transactions)

J2EE Architecture
E-Auctions

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 26

Servlets

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 27

• Classes that dynamically process requests and construct responses

– Dynamically generate html pages in response to requests

– May also send data in other forms like XML or serialized Java objects

– Run in a servlet container and have access to services that the

container provides

• In an application processing of each request will normally be done

by a different servlet.

– e.g. search catalog, check out, confirm order etc.

• Client of the servlet can be any of the following

– Browser

– Applet

– Java Application

Servlets
Introduction

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 28

Servlet

Container

Thread Thread

Servlet

Create Thread Pool

 Instantiate servlet

 Call init () method

 Allocate request to thread

 Allocate request to thread

Block all further requests Wait

for active threads to end

Terminate thread pool

 call destroy () method

 terminate servlet

 Container shutdown

 Call service () method

 Call service () method

 Perform

Initialization

 Perform Service

Perform

cleanup
 Servlet destroyed

& garbage collected

 Perform Service

Shutdown

Initiated

HTTP

Request 1

HTTP

Request 2

HTTP

Response 1

HTTP

Response 2

Servlets
Servlet Lifecycle

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 29

• Servlet can communicate with four different entities

– Client during request/response cycle

– With servlet container to get context/config information

– With other resources on server e.g. servlets, EJBs

– With external resources like databases, legacy systems, and EIS

• Client communication can be in many forms

• In Http communication

– Request – Information parameters (as name value pairs)

– Response

• HTML (Browsers)

• WML (Mobile Devices)

• CSV (Spreadsheets)

• XML (Communicating with non-java systems)

• Serialized Objects

Servlets
Servlet Communication

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 30

Servlets API

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 31

• Contained in two packages

– javax.servlet

– javax.servlet.Http

• Contains 20 interfaces and 16 classes

– Prevalence of interfaces allows servlet implementation to be

customized to container

Servlets
Servlet API

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 32

• Javax.servlet package can be extended for use with any

application layer protocol

– http is the most popularly used protocol

– Javax.servlet.http package is extension of the javax.servlet

package for http protocol

• The Servlet spec allows you to implement separate Java methods

implementing each HTTP method in your subclass of HttpServlet.

– Override the doGet() and/or doPost() method to provide normal servlet

functionality.

– Override doPut() or doDelete() if you want to implement these methods.

– There's no need to override doOptions() or doTrace().

– The superclass handles the HEAD method all on its own.

Servlets
JAVA Servlets

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 33

• Provides the contract between the servlet/web application

and the web container

• Used for creating protocol independent server applications

• Servlet interface defines the core of the entire package

– Other interfaces provide additional services to the developer

• Contains 12 interfaces

– 7 interfaces implemented by the package

– 5 interfaces implemented by the user

Servlets
Javax.servlet Package

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 34

Exception

ServletException

UnavailableException

interface

Servlet

 interface

ServletConfig

 Serializable

GenericServlet

 interface

FilterConfig

 interface

ServletContext

 interface

FilterChain

 EventObject

ServletContextEvent

 ServletContextAttributeEvent

 interface

ServletRequest

 ServletRequestWrapper

 interface

RequestDispatcher

 OutputStream

ServletOutputStream

 InputStream

ServletInputStream

 EventListener

interface

ServletContextListener

 interface

ServletResponse

 ServletResponseWrapper

 interface

SingleThreadModel

 EventListener

interface

ServletContextAttributeListener

Servlets
Class Diagram

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 35

• Server implemented interfaces

– ServletConfig

– ServletContext

– ServletRequest

– ServletResponse

– RequestDispatcher

– FilterChain

– FilterConfig

• User implemented interfaces

– Servlet

– ServletContextListener

– ServletContextAttributeListener

– SingleThreadModel

– Filter

Servlets
Interfaces

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 36

• Servlet Classes

– GenericServlet

– ServletContextEvent

– ServletContextAttriubuteEvent

– ServletInputStream

– ServletOutputStream

– ServletRequestWrapper

– ServletResponseWrapper

• Exception Classes
– ServletException

– UnavailableException

Servlets
Classes

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 37

• GenericServlet is abstract class that implements servlet interface

– Requires implementing the service() method

– Servlets normally extend from this class

• Methods

– LifeCycle Methods

• init()

• service()

• destroy()

– Environment Methods

• getServletContext()

• getInitParameter(…)

• getInitParameterNames()

– Utility Methods

• log(…)

Servlets
Generic Servlet Class

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 38

• Javax.servlet package provides interfaces and classes to service

client requests in protocol independent manner.

– Javax.servlet.http package supports http-specific functions.

• Several of the classes are derived from the javax.servlet packaage

• Some methods from the javax.servlet package are also used

• Contains

– 8 interfaces

– 7 classes

Servlets
javax.servlet.http

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 39

Interfaces

– HttpSession

– HttpServletRequest

– HttpServletResponse

– HttpSessionAttributeListener

– HttpSessionActivationListener

– HttpSessionBindingListener

– HttpSessionContext

– HttpSessionListener

Servlets
Classes and Interfaces

Classes

– Cookie

– HttpServlet

– HttpServletRequestWrapper

– HttpServletResponseWrapper

– HttpSessionBindingEvent

– HttpSessionEvent

– HttpUtils

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 40

GenericServlet

Serializable

HttpServlet

ServletRequest interface

HttpServletRequest

ServletRequestWrapper

HttpServletRequestWrapper

ServletRequestWrapper

HttpServletRequestWrapper

ServletResponse interface

HttpServletResponse

Object

NoBodyResponse

Object

HttpUtils

ServletOutputStream

NoBodyOutStream

EventObject

HttpSessionEvent

HttpSessionBindingEvent

Interface

HttpSessionContext

Interface

HttpSession

EventListener Interface

HttpSessionListener

EventListener Interface

HpptSessionAttributeListener

EventListener Interface

HpptSessionActivationListener

EventListener Interface

HpptSessionBindingListener

Servlets
Class Diagram

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 41

• Extends the Generic Servlet

– Inherits the init() and destroy methods()

– Overrides the service() method

• Service() method

– Signature: Protected void service(HttpServletRequest req,

HttpServletResponse res)

– Forwards the request to the appropriate method

– Developer should not normally override this method

• The developer needs to implement the methods

corresponding to the request

– doGet(), doPost(), doHead(), doPut()

Servlets
HttpServlet Class

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 42

• Extends ServletRequest

• Inherited methods from ServletRequest
– getParameterNames()

– getParameter(String name)

– getParameterValues(String name)

– getServerName()

– getServerPort()

– getRequestDispatcher

• New methods defined

– getCookies()

– getHeader()

– getPathInfo()

– getContextPath()

– getQueryString()

Servlets
HttpServletRequest Interface

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 43

• Extends ServletResponse

• Inherited methods from ServletResponse

– getoutputStream()

– getWriter(String name)

– flushBuffer()

– setContentType()

• New methods

– encodeURL(String url)

– encodeRedirectURL(String url)

• setDateHeader()

– setStatus()

– ………

Servlets
HttpServletRequest Interface, cont’d.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 44

• Constructor

– Cookie (String name, String value)

• Methods

– public void setMaxAge(int expiry)

– public void setValue(String newValue)

• Can be added to the response by using

– void addCookie(Cookie cookie) of HttpServletResponse

• Can be obtained from the request by using

– Cookie[] getCookies() method of the HttpServletRequest

Servlets
Cookie Class

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 45

• Create a servletclass

– extend HttpServlet

• Implement the doGet() or doPost() method

– Both methods accept two parameters
• HttpServletRequest

• HttpServletResponse

– Obtain parameters from HttpServletRequest Interface using
• getParameter(String name)

– Obtain the writer from the response object

– Process input data and generate output (in html form) and
write to the writer

– Close the writer

Servlets
Writing a Servlet

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 46

Example 1

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 47

package edu.albany.mis.goel.servlets;

import javax.servlet.http.*;

import java.io.*;

public class Login extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response) {

 // Get the parameter from the request

 String username = request.getParameter("username");

 // Send the response back to the user

 try {

 response.setContentType("text/html");

 PrintWriter writer = response.getWriter();

 writer.println("<html><body>");

 writer.println("Thank you, " + username + ". You are now logged into the system.");

 writer.println("</body></html>");

 writer.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Example 1
Login Servlet

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 48

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

 <head>

 <title>Login</title>

 </head>

 <body>

 <h1>Login</h1>

 Please enter your username and password

 <form action="servlet/edu.albany.mis.goel.servlets.Login" method="POST">

 <p><input type="text" name="username" length="40">

 <p><input type="password" name="password" length="40">

 <p><input type="submit" value="Submit">

 </form>

 </body>

</html>

Example 1
Login.html

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 49

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>Login Servlet</display-name>

 <servlet>

 <servlet-name>Login</servlet-name>

 <servlet-class>edu.albany.mis.goel.servlets.Login</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Login</servlet-name>

 <url-pattern>/Login</url-pattern>

 </servlet-mapping>

</web-app>

Example 1
web.xml

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 50

• Compiling

– Makefile contains all the scripts for compiling and deployment of the

servlet

– Needs to be modified for any give application

• Commands

– make shutdown: shuts down the tomcat server

– make clean: cleans up the current setup for the application

– make all: compiles code, creates war file and deploys war file on server

– make startup: starts the server again

• Running the servlet

– http://localhost:8080/login/login.html

Example 1
Login Deployment

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 51

Example 2

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 52

package edu.albany.mis.goel.servlets;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Enumeration;

import java.util.Date;

/**

 * Description:

 * @author Andrew Harbourne-Thomas

 * @version 1.0

 */

public class HttpRequestResponseServlet extends HttpServlet {

 private static int cookiesCreated = 0;

Example 2
HttpRequestResponsServlet

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 53

 /** Output a web page with HTTP request information and response data.

 * @param request The object containing the client request

 * @param response The object used to send the response back

 */

public void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException {

 StringBuffer httpRequestTable = getHttpRequestTable(request);

 StringBuffer httpResponseTable = getHttpResponseTable(response);

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 //HTML page

 out.println("<html><head><title>RequestResponseServlet</title></head><body>");

 out.println("<h1>Request Information</h1>" + httpRequestTable + "<hr>");

 out.println("<h1>Response Information</h1>" + httpResponseTable);

 out.println("</body></html>");

 out.close();

 }

Example 2
Servlet – doGet()

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 54

public class HTMLTable {

 private StringBuffer head;

 private StringBuffer rows;

 private StringBuffer foot;

 /** Initalises the StringBuffer Objects.

 */

 public HTMLTable() {

 head = new StringBuffer();

 head.append("<table width=\"90%\" align=\"center\">");

 head.append("<tr><th width=\"50%\" bgcolor=\"lightgrey\">Attribute</td>");

 head.append("<th width=\"50%\" bgcolor=\"lightgrey\">Value</td></tr>");

 rows = new StringBuffer();

 foot = new StringBuffer();

 foot.append("</table>");

 }

Example 2
HTMLTable Class

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 55

/** Appends the attribute and value in a row to the HTML table StringBuffer.

 * @param attribute The first column value.

 * @param value The second column value.

 */

 public void appendTitleRow(String attribute) {

 rows.append("<tr><td colspan=2><u>").append(attribute);

 rows.append("</u></td></tr>");

 }

 /** Appends the attribute and value in a row to the HTML table StringBuffer.

 * @param attribute The first column value.

 * @param value The second column value.

 */

 public void appendRow(String attribute, String value) {

 rows.append("<tr><td>").append(attribute);

 rows.append("</td><td><code>").append(value).append("</code></td></tr>");

 }

 /** Appends the attribute and value in a row to the HTML table StringBuffer.

 * @param attribute The first column value.

 * @param value The second column value.

 */

 public void appendRow(String attribute, int value) {

 appendRow(attribute, new Integer(value).toString());

 }

Example 2
HTMLTable Class, cont’d.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 56

 /** Appends the attribute and value in a row to the HTML table StringBuffer

 * @param attribute The first column value.

 * @param value The second column value.

 */

 public void appendRow(String attribute, boolean value) {

 appendRow(attribute, new Boolean(value).toString());

 }

 /** Overrides Object.toString method to present a String representation of the HTML table built up.

 * @return value The second column value.

 */

 public String toString() {

 return head.append(rows).append(foot).toString();

 }

 /** Presents a StringBuffer representation of the HTML table built up.

 * @return value The second column value.

 */

 public StringBuffer toStringBuffer(){

 return head.append(rows).append(foot);

 }

}

Example 2
HTMLTable Class, cont’d.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 57

 /** Prepare a HTML table of information about the request made.

 * @param request The object containing the client request

 * @return String containing the table

 */

 private StringBuffer getHttpRequestTable(HttpServletRequest request) {

 HTMLTable table = new HTMLTable();

 table.appendRow("HTTP Request Method", request.getMethod());

 table.appendRow("Query String", request.getQueryString());

 table.appendRow("Context Path", request.getContextPath());

 table.appendRow("Servlet Path", request.getServletPath());

 //additional info if required

 /*

 table.appendRow("Path Info", request.getPathInfo());

 table.appendRow("Path Translated", request.getPathTranslated());

 table.appendRow("Request URI", request.getRequestURI());

 table.appendRow("Request URL", request.getRequestURL().toString());

 */

Example 2
Servlet - getHttpRequestTable

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 58

 // Get cookies from the user request

 Cookie[] ourCookies = request.getCookies();

 if (ourCookies == null || ourCookies.length == 0) {

 table.appendRow("Cookies", "NONE");

 } else {

 for (int i = 0; i < ourCookies.length; i++) {

 String cookieName = ourCookies[i].getName();

 String cookieValue = ourCookies[i].getValue();

 table.appendRow("Cookie: <code>" + cookieName + "</code>", cookieValue);

 }

 }

 Enumeration e = request.getHeaderNames();

 while (e.hasMoreElements()) {

 String headerName = (String)e.nextElement();

 String headerValue = request.getHeader(headerName);

 table.appendRow("Header: <code>" + headerName + "</code>", headerValue);

 }

 return table.toStringBuffer();

 }

Example 2
Servlet – getHttpRequestTable, cont’d.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 59

/** Prepare a HTML table of information about the response made.

 * @param response Gives access to the response object

 * @return String containing the table

 */

 private StringBuffer getHttpResponseTable(HttpServletResponse response) {

 HTMLTable table = new HTMLTable();

 int cookieCount = cookiesCreated++;

 String name = Integer.toString(cookieCount);

 String value = new Date(System.currentTimeMillis()).toString();

 Cookie cookie = new Cookie(name, value);

 response.addCookie(cookie);

 table.appendRow("Cookie Added:<code>" + name + "</code>", value);

 return table.toStringBuffer();

 }

}

Example 2
Servlet – getHttpRequestTable, cont’d.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 60

Tracking State

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 61

• A Cookie is data (String) that the server passes to the

browser and the browser stores on the server

– Set of name value pairs

• Web servers place cookies on user machines with id to

track the users

• Two types of cookies

– Persistent cookies: Stored on hard drive in text format

– Non-persistent cookies: Stored in memory and goes away

after you reboot or turn off the machine

Tracking State
Cookies

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 62

• Attributes of a cookie

– Name: Name of a cookie

– Value: Value of the cookie

– Comment: Text explaining purpose of cookie

– Max-Age: Time in seconds after which the client should not send cookie

back to server

– Domain: Domain to which the cookie should be sent

– Path: The path to which the cookie should be sent

– Secure: Specifies if cookie should be sent via https

– Version: Cookie version

(0 – original Netscape version of Cookie

 1 – cookies standardized via RFC 2109)

Tracking State
Cookie Attributes

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 63

package edu.albany.mis.goel.servlets;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Random;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.Cookie;

import javax.servlet.ServletException;

public class CookieServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest

request,HttpServletResponse response)

throws ServletException, IOException

 {

Tracking State
Cookie Servlet

Cookie[] cookies = request.getCookies();

 Cookie token = null;

 if(cookies != null) {

 for(int i = 0; i < cookies.length; i++)

 {

 if(cookies[i].getName().equals("token"))
{

 // Found a token cookie

 token = cookies[i];

 break;

 }

 }

 }

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 64

 response.setContentType("text/html");

 PrintWriter writer = response.getWriter();

 writer.println("<html><head><title>Tokens</title></head><body ");

 writer.println("style=\"font-family:verdana;font-size:10pt\">");

 String reset = request.getParameter("reset");

 System.out.println("token = " + token);

 if (token == null || (reset != null && reset.equals("yes"))) {

 Random rand = new Random();

 long id = rand.nextLong();

 writer.println("<p>Welcome. A new token " + id + " is now established</p>");

 // Set the cookie

 token = new Cookie("token", Long.toString(id));

 token.setComment("Token to identify user");

 token.setMaxAge(-1);

 token.setPath("/cookie/track");

Tracking State
Cookies (Token)

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 65

response.addCookie(token);

} else {

 writer.println("Welcome back. Your token is " + token.getValue() +
".</p>"); }

 String requestURLSame = request.getRequestURL().toString();

 String requestURLNew = request.getRequestURL() + "?reset=yes";

 writer.println("<p>Click <a href=" + requestURLSame +

 ">here again to continue browsing with the same identity.</p>");

 writer.println("<p>Otherwise, click <a href=" + requestURLNew +

 ">here again to start browsing with a new identity.</p>");

 writer.println("</body></html>");

 writer.close();

 }

}

Tracking State
Cookies, cont’d.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 66

package edu.albany.mis.goel.servlets;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Random;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.Cookie;

import javax.servlet.ServletException;

public class CookieServlet extends HttpServlet {

 protected void doGet(HttpServletRequest
request,HttpServletResponse response)

 throws ServletException, IOException {

 Cookie[] cookies = request.getCookies();

 Cookie token = null;

 if(cookies != null) {

 for(int i = 0; i < cookies.length; i++) {

 if(cookies[i].getName().equals("token")) {

 // Found a token cookie

 token = cookies[i];

 break;

 }

 }

 }

Tracking State
Cookies

 response.setContentType("text/html");

 PrintWriter writer = response.getWriter();

 writer.println("<html><head><title>Tokens</title></head><body ");

 writer.println("style=\"font-family:verdana;font-size:10pt\">");

 String reset = request.getParameter("reset");

 System.out.println("token = " + token);

 if (token == null || (reset != null && reset.equals("yes"))) {

 Random rand = new Random();

 long id = rand.nextLong();

 writer.println("<p>Welcome. A new token " + id + " is now
established</p>");

 // Set the cookie

 token = new Cookie("token", Long.toString(id));

 token.setComment("Token to identify user");

 token.setMaxAge(-1);

 token.setPath("/cookie/track");

 response.addCookie(token);

 }

 else {

 writer.println("Welcome back. Your token is " + token.getValue() +
".</p>");

 }

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 67

• http:// www.address.edu:1234/path/subdir/file.ext?query_string
– Service  http

– Host  www. Address. edu

– Port  1234

– /path/subdur/file.ext  resource path on the server

– query_string  additional information that can be passed to resource

• Http allows name value pairs to be passed to the resource
– http:// www.test.edu/index.jsp?firstname=sanjay+lastname=goel

• The server can place the id of a customer along with the URL

– http://www.fake.com/ordering/id=928932888329938.823948

• This number can be obtained by guessing or looking over some
one’s shoulder
– Timeout for the sessions may be a few hours

– User can masquerade as the owner of the id and transact on the web

Tracking State
URL Encoding

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 68

package edu.albany.mis.goel.servlets;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Random;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.ServletException;

public class TokenServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,HttpServletResponse

response)

 throws ServletException, IOException {

 // Get the token from the request

 String tokenID = request.getParameter("tokenID");

 // Prepare for response

 response.setContentType("text/html");

 PrintWriter writer = response.getWriter();

writer.println("<html><head><title>Tokens</title></head><body ");

 writer.println("style=\"font-family:verdana;font-size:10pt\">");

}

Tracking State
URL Rewriting

 if (tokenID == null) {

 // Client did not sent any token

 Random rand = new Random();

 tokenID = Long.toString(rand.nextLong());

 writer.println("<p>Welcome. A new token " + tokenID + " is now
established</p>");

 }

 else {

 // Client sent the token back

 writer.println("<p>Welcome back. Your token is " + tokenID + ".</p>");

 // Prepare links for sending requests back

 String requestURLSame = request.getRequestURL().toString() +
"?tokenID=" + tokenID;

 String requestURLNew = request.getRequestURL().toString();

 // Write the response and close

 writer.println("<p>Click <a href=" + requestURLSame +

 ">here again to continue browsing with the same
identity.</p>");

 writer.println("<p>Otherwise, click <a href=" + requestURLNew +

 ">here again to start browsing with a new
identity.</p>");

 writer.println("</body></html>");

 writer.close();

 }

}

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 69

• HTML allows creation of hidden fields in the forms

• Developers use hidden fields to store information for

their reference

• ID can be stored as a hidden form field

– <Input Type=Hidden Name=“Search” Value=“key”>

– <Input Type=Hidden Name=“id” Value=“123429823”>

Tracking State
Hidden Form Fields

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 70

package edu.albany.mis.goel.servlets;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Random;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.ServletException;

public class HiddenFieldServlet extends HttpServlet {

 protected void doGet(HttpServletRequest
request,HttpServletResponse response)

 throws ServletException, IOException {

 // Get the token from the request

 String token = request.getParameter("token");

 // Prepare for response

 response.setContentType("text/html");

 PrintWriter writer = response.getWriter();

 writer.println("<html><head><title>Tokens</title></head><body ");

 writer.println("style=\"font-family:verdana;font-size:10pt\">");

 if(token == null) {

 // Client did not sent any token

 Random rand = new Random();

 token = Long.toString(rand.nextLong());

 writer.println("<p>Welcome. A new token " + token + " is now
established</p>");

 }

Tracking State
Hidden Form Field

else {

 // Client sent the token back

 writer.println("<p>Welcome back. Your token is " + token + ".</p>");

 // Prepare a URL for sending requests back

 String requestURL = request.getRequestURL().toString();

 // Write a form with a hidden field

 writer.println("<p>");

 writer.println("<form method='GET' action='" + requestURL + "'>");

 writer.println("<input type='hidden' name='token' value='" + token + "'/>");

 writer.println("<input type='submit' value='Click Here'/>");

 writer.println("</form>");

 writer.println(" to continue browsing with the same identity.</p>");

 // Write another form without the hidden field

 writer.println("<p>");

 writer.println("<form method='GET' action='" + requestURL + "'>");

 writer.println("<input type='submit' value='Click Here'/>");

 writer.println("</form>");

 writer.println(" to start browsing with a new identity.</p>");

 writer.println("</body></html>");

 writer.close();

 }

 }

}

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 71

• Provides methods to establish session between client and server

– Session lasts for a specified time

– Allows binding of objects over multiple requests

• Important Methods

– getID()

– getAttribute(String name)

– getAttriubuteNames()

– setAttribute(String name, Object value)

– removeAttribute(String name)

– inValidate()

Tracking State
HttpSession Interface

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 72

/** This is the main servlet of the application which reads the

 * products from the product list and presents it to the user for

 * selecting and addition to the shopping card. The data is read from

 * an XML file and is added to a hashmap which is added to the

 * ServletContext for future access.

 * Steps:

 * init()

 * 1. Gets the servletcontext

 * 2. Obtains the name of the product file from the context (init param)

 * 3. Creates a DOM parser

 * 4. Parses the product file and creates a document (xml data)

 * 5. Adds the product information to a Hashmap called product

 * 6. Adds the Hashmap to the context.

 * doGetPost()

 * 1. Reads the products from the Hashmap

 * 2. Creates web page which contains standard header footer (dispatcher)

 * 3. Adds products to the web page and links them to the cartServlet

 */

package edu.albany.mis.goel.store;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

// JAXP packages

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import org.w3c.dom.*;

Store
MainServlet

public class MainServlet extends HttpServlet {

 public void init() throws ServletException {

 // Load the products from XML file provided by init parameter

 ServletContext context = getServletContext();

 InputStream productsFile = context.getResourceAsStream((String)
context.getInitParameter("productsFile"));

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

 DocumentBuilder db = null;

 try { db = dbf.newDocumentBuilder();

 } catch (ParserConfigurationException pce) {

 throw new ServletException (pce.getMessage());

 }

 Document doc = null;

 try { doc = db.parse(productsFile);

 } catch (IOException ioe) {

 throw new ServletException(ioe.getMessage());

 } catch (SAXException se) {

 throw new ServletException(se.getMessage()); }

 NodeList productsList = doc.getElementsByTagName("product");

 HashMap products = new HashMap();

 Node product;

 for (int ctr = 0; ctr < productsList.getLength(); ctr ++) {

 product = productsList.item(ctr);

 NamedNodeMap attribs = product.getAttributes();

 Node attrib = attribs.getNamedItem("name");

 String name = attrib.getNodeValue();

 attrib = attribs.getNamedItem("price");

 String price = attrib.getNodeValue();

 Product p = new Product(ctr,name,price);

 products.put(new Integer(ctr),p);

 }

 // Store products in the ServletContext

 context.setAttribute("products",products);

 }

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 73

public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGetOrPost(req,res);

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGetOrPost(req,res);

 }

private void doGetOrPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 PrintWriter out = res.getWriter();

 // Include standard header

 RequestDispatcher dispatcher = req.getRequestDispatcher("/header.html");

 dispatcher.include(req,res);

 HashMap products = (HashMap) getServletContext().getAttribute("products");

 // List the products, clickable to add to cart

 Iterator it = products.values().iterator();

 out.println("<table>");

 while (it.hasNext()) {

 out.println("<tr>");

 Product product = (Product) it.next();

 out.print("<td>");

 out.print(product.getName() + "</td><td>" + product.getPrice());

 out.println("</td>);

 out.println("</tr>");

 }

 out.println("</table>");

 // Include standard footer

 dispatcher = req.getRequestDispatcher("/footer.html");

 dispatcher.include(req,res);

 }

}

Store
MainServlet

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 74

package edu.albany.mis.goel.store;

import java.util.*;

public class Cart {

 private HashMap items = new HashMap();

 // Default Cart Constructor

 public Cart() {

 }

 // Function to get items from the cart

 public Iterator getItems() {

 return items.values().iterator();

 }

 public void addItem(Product product) throws ItemAlreadyAddedException {

 Integer id = new Integer(product.getId());

 if (this.items.containsKey(id)) {

 throw new ItemAlreadyAddedException();

 }

 this.items.put(id, product);

 }

}

package edu.albany.mis.goel.store;

import javax.servlet.*;

public class ItemAlreadyAddedException extends ServletException {

}

Store
Cart and Product

package edu.albany.mis.goel.store;

public class Product {

 private String name;

 private String price;

 private int id;

 public Product(int id, String name, String price) {

 this.price = price;

 this.name = name;

 this.id=id;

 }

 public String getPrice() {

 return this.price;

 }

 public String getName() {

 return this.name;

 }

 public int getId() {

 return this.id;

 }

}

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 75

package edu.albany.mis.goel.store;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CartServlet extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGetOrPost(req,res);

 }

 private void doGetOrPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // Get the cart if it exists

 HttpSession session = req.getSession();

 Cart cart = (Cart) session.getAttribute("cart");

 if (cart == null) {

 cart = new Cart();

 }

 // Check to see if we are adding to the cart or we want to dispay the cart

 String adding = req.getParameter("add");

 PrintWriter out = res.getWriter();

 // Add to it

 if (adding.equalsIgnoreCase("true")) {

 addToCart(req, cart, out);

 }

 // Display its contents

 displayCart(cart, out);

 }

Store
CartServlet

private void addToCart(HttpServletRequest req, Cart cart, PrintWriter out)

 throws ItemAlreadyAddedException {

 // Get the item to add from the request

 // Get the products from the servletcontext

 HashMap products = (HashMap) getServletContext().getAttribute("products");

 // Find the one represented by the ID that we passed in

 try {

 Integer id = new Integer(Integer.parseInt(req.getParameter("id")));

 Product p = (Product) products.get(id);

 // Add it to the cart

 cart.addItem(p);

 // add the cart to the session

 req.getSession().setAttribute("cart",cart);

 out.println("Succesfully added product to cart!
");

 } catch (NumberFormatException nfe) {

 out.println("Can't add product
");

 }

 }

 private void displayCart(Cart cart, PrintWriter out) {

 Iterator items = cart.getItems();

 out.println("<h1>Current Cart Contents:</h1>");

 out.println("<table>");

 while (items.hasNext()) {

 out.println("<tr>");

 Product p = (Product)items.next();

 out.println("<td>"+p.getName()+"</td>"+"<td>"+p.getPrice() +"</td>");

 out.println("<tr>");

 }

 out.println("</table>");

 }

}

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 76

/** Checkout for the customer. This is also the place where the

 * security check should be done to make sure that the customer is a

 * registered customer. There are two ways of doing that. Currently

 * security is not implemented

 *

 * 1. Declarative - Relies on the deployment

 * 2. Programmatic - Internally codes the security

 *

 * Steps

 * 1. Prints the contents of the shopping cart

 * 2. Asks the user to confirm his/her selection

 * 3. Sends the paget to the confirm page.

 */

package edu.albany.mis.goel.store;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.security.Principal;

public class CheckOutServlet extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGetOrPost(req,res);

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGetOrPost(req,res);

 }

Tracking State
CheckoutServlet

private void doGetOrPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // Get the writer

 PrintWriter out = res.getWriter();

 // include the cart display, and ask to confirm check out.

 System.out.println("Dispatching the request");

 RequestDispatcher dispatcher = req.getRequestDispatcher("/Cart?add=false");

 dispatcher.include(req,res);

 out.println("
Please Click Confirm to check out");

 out.println("<form action='confirmed.html'>" +

 "<input type='submit' value='Confirm'></form>");

 }

}

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 77

Application

Deployment

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 78

AppDir/

 index.html

 main.jsp

 images/

 company.jpg

 divider.jpg

 admin/

 admin.jsp

 WEB-INF/

 web.xml

 classes/edu/albany/mis/goel/servlets/

 ShoppingCart.class

 Catalog.class

 lib/

 xereces.jar

 xalan.jar

 edu/albany/mis/goel/servlets/

 ShoppingCart.java

 Catalog.java

Application Deployment
Structure of Web Application

• Public Resources that are

downloaded directly to the client

without processing

– Lib files are standard libraries that

the code may need

– JSP files are an exception since they

are converted to servlets and not

downloaded directly

• Files which the web container

processes but not client

– Lib files are standard libraries that

the code may need

• Source Files which are developed

by the user

– Package directory reduces chances of

name conflicts

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 79

• Web applications are deployed in the web applications directory

of the web server

– In tomcat this directory is ${Tomcat_Home}/webapps

• Two separate ways of deploying web applications

Exploded Directory Format

– Development directory is copied to the application directory of the web

server

– Used primarily in development mode when changes are frequent

Web Application Archive (WAR) Format

– Archived version of development directory is copied to application

directory of web server

– Created using jar utility i.e. jar –cv0f SimpleWebApp.war .

Application Deployment
Deployment of Web Applications

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 80

• If web application is in a location different than the webapps
directory context is defined

– Location: ${Tomcat_Home}/conf/server.xml

• <context path=“/store” docBase=“/store.war”
reloadable=“true>

– Context declares a context to exist with a base URL path of /store

– The application can be accessed at http://localhost:8080/store/.

– docBase tells tomcat where to find the web application

– Relative path (/store.war) tells Tomcat that store.war is at the top level of
the webapps directory

– An absolute path can also be supplied I.e. c:/myapps/store.war

– Reloadable set to true indicates that if the class or lib files change the
application detects the change

Application Deployment
Deployment of Web Applications, cont’d.

http://localhost:8080/store/

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 81

• Each application in a web container is associated with a context

– All web resources are associated with the context.

• Servlet context is rooted at a known path within web container. (e.g.
{Tomcat_Home}/webapps/store/home.html)

– Context for this application is /store

– User would access this as: http://localhost:8080/store/home.html

• There is a special object called servlet context.

– A sandbox for the application (prevents name clashes and efficient downloading of
classes without having to set classpath)

– Allows servlets access container resources

– Primary use of servlet context is to share attributes between servlets in an
application.

• Context may be defined explicitly in a web server
– Configuration Directory in Tomcat: ${Tomcat_Home}/conf/server.xml

– <context path=“/examples” docBase=“examples” debug=“0” reloadable=“true”>

Application Deployment
ServletContext

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 82

• Conveys configuration information of a web application

• The primary elements of a deployment descriptor file

– Servlet definitions & mappings

– Servlet context initialization parameters

– Error pages

– Welcome pages

– File based security

• Rules for the deployment descriptor file

– Resides at the top level of the WEB-INF directory

– Must be a well formed XML file called web.xml

– Must conform to the dtd

 (located at http://java.sun.com/dtd/web-app-2-3.dtd)

Application Deployment
Deployment Descriptor

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 83

• Header denotes the version of XML

<?xml version="1.0" encoding="ISO-8859-1"?>

• Describes the the DTD for the application

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 “http://java.sun.com/dtd/web-app_2_3.dtd">

• Description of the application enclosed in web-app tags

<web-app>

Contents of the file

<web-app>

Application Deployment
Deployment Descriptors - Header

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 84

• Context parameters are parameters that are related to the entire
application.

– Any number of initialization parameters can be provided in the context

– One initialization parameter for web application is shown below:

 <context-param>

 <param-name>

 adminEmail

 </param-name>

 <param-vlaue>

 admin@wrox.com

 </param-value>

 </context-param>

• ServletContext object is used to obtain context information

e.g. String adminEmail = getServletContext().getInitParameter(“adminEmail”);

– The methods in ServletContext are abstract, their implementations must
be provided by the web container.

Application Deployment
Deployment Descriptors - Context

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 85

• Servlet Description, e.g.
 <servlet>

 <servlet-name>storeservlet</servlet-name>

 <servlet-class>edu.albany.mis.goel.servlets.storeservlet<servlet-class>

 <init-param>

 <param-name>version<param-name>

 <param-value>0.1b<param-value>

 <init-param>

 </servlet>

– The above servlet is invoked by http://localhost:8080/store/home.html

(Here store is the context of the application)

– The initialization parameters are used for the specific servlet

– They can be accessed using the ServletConfig object

e.g. String version = getServletConfig().getInitParameter(“version”);

Application Deployment
Deployment Descriptors - Servlets

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 86

• Servlet mappings map servlets to specific URL pattern

<servlet-mapping>

 <servlet-name>Servlet1</servlet-name>

 <url-pattern>/home.html<url-pattern>

 </servlet-mapping>

– Allows web container to send requests to specific servlet

• Why is servlet mapping required?

– A logical way to specify servlets would be to use context/servletname

(i.e. http://localhost:8080/store/storeservlet)

– Allows multiple urls to be mapped to same servlet

– Allows implementation details to be hidden

• Servlets can be mapped to more than one URL thro the use of wildcards in
<url-pattern>

e.g. <servlet-mapping>

 <servlet-name>ValadatorServlet<servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

– The previous example maps every URL encountered to the same servlet

Application Deployment
Deployment Descriptors - Servlets

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 87

• Error pages allow the application to specify pages to be shown when

particular errors occur

– Used for Java Exceptions and Http Errors.

– The error page shown below is displayed when the server encounters a

java.lang.ArithmeticException.
 <error-page>

 <exception-type> java.lang.ArithmeticExceception </exception-type>  Exception Type

 <location>/error.html</location>  Resource to Show

 </error-page>

– The error page shown below is displayed when the server encounters a

an Http error
 <error-page>

 <error-code>404</error-code>  Http Error Code

 <location>/404.html</location>  Resource to Show

 </error-page>

Application Deployment
Deployment Descriptors – Error Pages

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 88

• Application Name & Description

 <web-app>

 <display-name> Music Store</display-name>

 <description>Application for Music Rentals</description>

 </web-app>

• Welcome Pages
 <welcome-file-list>

 <welcome-file>index.html</welcome-file>  Welcome File URL

 </welcome-file-list>

Application Deployment
Deployment Descriptors - Miscellaneous

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 89

• Define Security Constraint (resource collection & authorization
constraint)

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>CheckOutResource</web-resource-name>

 <url-pattern>/CheckOutServlet/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>storeuser</role-name>  Welcome File URL

 </auth-constraint>

 </security-constraint>

• Define Login Configuration
<login-config>

 <auth-method>FORM</auth-method>

 <realm-name>Wrox Store Checkout</realm-name>

 <form-login-config>

 <form-login-page>/login.html</form-login-page>

 <form-error-page>/error.html</form-error-page>

 </form-login-config>

</login-config>

• Define Users in Tomcat (Add users in ${Tomcat_Home}/conf/tomcat-

users.xml)
 <tomcat-users>

 <user name=“tomcat” password=“tomcat” roles=“tomcat” />

 <user name=“role1” password=“tomcat” roles=“role1” />

 </tomcat-users>

Application Deployment
Security Constraints

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 90

• ServletConfig Object is used to pass initialization parameters to a

servlet

• Useful methods

– getServletName(): Returns name of servlet

– getServletContext(): Returns servletContext object

– getInitParameter(String name): returns value of the specified parameter

(null if not present)

– getInitParameterNames(): Gets names of all the parameters in the

initialization list.

Application Deployment
ServletConfig Interface

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 91

• ServletContext is specific to a particular web application running

in a JVM

– Each web application in a container will have a single servlet context

associated with it.

– Allows you to maintain state across all servlets and clients in the

application

– Also acts a shared repository for common attributes to all servlets

– Allows servlets to share data with each other

• ServletContext Object also used for communication with host

server

– Allows servlet to get information about server on which it is running

• A typical use of this would be in a chat application

Application Deployment
ServletContext Interface

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 92

• Methods

– getContext(String uripath)

– getMimeType()

– getResourcePaths()

– getRequestDispatcher()

– getRealPath()

– getServerInfo()

– getInitParameter()

– getAttribute()

– setAttribute()

– ...

Application Deployment
ServletContext Interface, cont’d.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 93

Session Management

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 94

Session Management
Basics

• HTTP is a stateless protocol. Each re.quest and

response stand alone

• Without session management, each time a client makes

a request to a server, it’s brand new user with a brand

new request from the server’s point of view.

• A session refers to the entire interaction between

between a client and a server from the time of the

client’s first request, which generally begins the session,

to the time the session is terminated.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 95

Session Management
Creating and Using Sessions

• Two methods of the HttpServletRequest object are
used to create a session:

– HttpSession getSession();

– HttpSession getSession(boolean);

• Other methods for dealing with sessions:

 Method Description

String getRequestedSessionID() Gets the ID assigned by the server to

the session

Boolean isRequestSessionIdValid() Returns true if the request contains a

valid session ID

Boolean

isRequestSessionIdFromCookie()

Returns true if the session ID was sent

as part of a cookie

Boolean isRequestSessionIdFromURL() Returns true if the session ID was sent

through URL rewriting

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 96

Session Management
What do you do with a session?

• Sessions are useful for persisting information about a

client and a client’s interactions with an application.

• To do that, the HttpSession interface defines a number

of mehods:

– setAttribute(String, Object)

– getAttribute(String)

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 97

Forwarding and

Including Requests

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 98

Forwarding and Including Requests
Obtaining RequestDispatcher

• From ServletRequest

– RequestDispatcher getRequestDispatcher(String path)

– The path argument can be a relative path or absolute path

– If the path is absolute relative to application context it starts with a “/”

e.g. /Login

– If the path if relative it is interpreted relative to the current web

component location, e.g. if web component is /store then case would be

considered /store/case

• From ServletContext

– ServletContext getServletContext()

– RequestDispatcher getNamedDispatcher(String name)

– RequestDispatcher getRequestDispatcher(String path)

– The path argument should always start with a / and is interpreted relative

to the application context

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 99

Forwarding and Including Requests
Using RequestDispatcher

• Forwarding Request

– void forward(ServletRequest request, ServletResponse

response) throws ServletException, java.io.IOException

– Calling servlet should not write any data to the response

stream before calling this method

– If response data is sent to the stream before calling forward

an error is thrown

• Including Resource

– void include(ServletRequest req, ServletResponse res) throws

ServletException, java.io.Exception

– You can safely write to the ResponseStream before calling

the include function.

Sanjay Goel, School of Business, University at Albany, State University of New York of 99 100

Forwarding and Including Requests
Adding Parameters

• Parameters are added for use in the forwarded request

• Several methods defined in ServletRequest Interface

– Object getAttrubute(String name)

– Enumeration getAttributeNames()

– void setAttribute(String name, Object o)

– void removeAttribute(String name)

• The calling servlet can set the attributes

• The receiving servlet will use getAttribute(String)

method to retrieve the values

